

Decision Support for Rehabilitation Hospital Scheduling – Ideas for Heuristic Algorithms

Steffen Kasper, Institute of Production Management, Leibniz Universität Hannover

Agenda

Motivation

- 2. The Monolithic Planning Approach
- 3. Outline of a Heuristic Algorithm
- 4. Next Steps

Rehabilitation vs. Acute Hospitals

Rehabilitation Hospital

- Restoring patients' health after surgery or injury
- Long length of stay (up to 6 weeks)
- Planning problem of high complexity due to long time horizon

Acute Hospital

- Intensive diagnosis and therapy
- Short length of stay (<1 week or emergencies)
- Bottleneck resource (surgery) dictates planning process

Planning Problem of Existing Patients in Rehabhospitals

Example for Scheduling a Single Water Aerobics Treatment on a Tuesday

Example of a Large Sized Rehabilitation Hospital

- Planning horizon 4-6 weeks
- ~400 patients
- ~600 activities available (wateraerobics, physiotherapy etc.)
- 6.800 prescribed orders result in >38.000 single events
- 80 categories of resources contain >380 single resources
- 2-3 resources necessary per event
- Discrete time slots à 5 minutes
- Rolling planning with partly fixed events

Planning process with high complexity

Agenda

- 1. Motivation
- 2. The Monolithic Planning Approach
- 3. Outline of a Heuristic Algorithm
- 4. Next Steps

The Monolithical Optimization Model¹

- Modeling as an assignment problem
- Central binary decision variables:
 - Scheduling variable x_{p,m,d,t}:
 - *,d,t*: Patient *p* starts treatment *m* on day *d* in time slot *t*
 - Connection variable $y_{p,m,f,d,t}$: Patient *p* starts treatment *m* on day *d* in time slot *t* using resource *f*

The Monolithical Optimization Model

- Objective Function: Maximization of number of scheduled treatments
- Restrictions:
 - ... combining the two central binary variables
 - ... reflecting the resource availability
 - ... prohibiting the collision of treatments
 - ... preventing overstressing patients capabilities
 - ... ensuring correct sequences of treatments
 - fixing the date of treatments
 - various more …

Solvability of the Monolithic Model

- Small problem instance:
 - 40 Patients, 18 resources, 30 days, 120 time slots
 - Nonzeros: ~30,000,000 (GAMS) / ~ 6,700,000 (CPLEX)
 - ~7% gap after 1hour, optimality after 24hours
- Large problem instance:
 - >400 Patients, ~100 resources, 30 days, 120 time slots
 - Nonzeros: ~800,000,000 (GAMS), -

Not solveable monolithically at the moment

Solving the Planning Problem Using a Decomposition Approach

Agenda

- 1. Motivation
- 2. The Monolithic Planning Approach
- 3. Outline of a Heuristic Algorithm
- 4. Next Steps

Overview: Iterative Heuristic Algorithm

 Greedy Heuristic with incentive scheme Local Search with incentive scheme Local Search without incentive scheme

Iterative Algorithm: Step 1 – The Greedy Heuristic

- Target: Construction of a starting solution
- Procedure:
 - Scheduling the first patient using all available resources
- → Blocking of used resource capacity Iteration
 - Scheduling the next patient using all remaining resources
 - Incentive scheme:
 - Problem: "Cluttered" schedules with many useless gaps
 - Reward seamless scheduling of treatments

Iterative Algorithm: Step 2 –Local Search

- Target: Optimization of the schedule from step 1
- Approach:
 - Optimization of treatments and resources for a limited number of patients
 - Selection of patients in each iteration: randomly or considering the amount of so far scheduled treatments
 - Deactivation of the incentive scheme as soon as the improvements are getting small

Description of Test Instances

Test instance	Small Rehab Hospital	Large Rehab Hospital
Patients	40	429
Types of activities	25	182
Prescribed treatments	~3.400	~36.300
Days	30	
Time slots (à 5-min)	120	
Resource categories	18	26
Single resources	18	92

Used computing capacity: 4 cores, 3GHz, 8GB RAM

Numerical Results: Small Rehabilitation Hospital

Numerical Results – in Detail: Small Rehabilitation Hospital

Numerical Results: Large Rehabilitation Hospital

Numerical Results – in Detail: Large Rehabilitation Hospital

Agenda

- 1. Motivation
- 2. The Monolithic Planning Approach
- 3. Outline of a Heuristic Algorithm

4. Next Steps

Next Steps

- Testing the approach with further data
- Looking for a possibility of practical application
- Modeling of standardized, cyclic schedules representing typical clinical pathways in rehabilitation hospitals (e.g., rehabilitation after a hip replacement, heart attack etc.)