UNIVERSITY OF TWENTE.

CLUSTERING CUNCAL DEPARIMENISFOR WARDS TO ACHEVE A PRESPECIFED BLOCKING PROBAEIUTY

Theresia van Essen, Mark van Houdenhoven, Johann Hurink

PROBLEMSTATEMENT

- Number of beds in HagaZiekenhuis is reduced by insurance companies.
- Possible solutions:
- Reduce number of admissions
- Reduce LOS
- Level the bed usage by e.g. adapting the OR-schedule
- Use the available beds in a different way

PROBLEMSTATEMENT

UNIVERSITY OF TWENTE.

PROBLEMSTATEMENT

UNIVERSITY OF TWENTE.

PROBLEMSTATEMENT

UNIVERSITY OF TWENTE.

PROBLEMSTATEMENT

DEIERMNING NUMBER OF BEDS NEEDED

 FORACLUSTER

- The number of beds needed is determined by the Erlang loss formula:
$\min x$

$$
\frac{(\lambda \mu)^{x} / x!}{\sum_{k=0}^{x}(\lambda \mu)^{k} / k!} \leq \rho
$$

$\lambda=$ expected number admissions per day

$$
\begin{gathered}
\mu=\text { average LOS } \\
x=\text { number of beds } \\
\rho=\text { predefined blocking probability }
\end{gathered}
$$

DEIERMNING NUMBER OF BEDS NEFDED

EXAMPLE

- Clinical department $1: \mu_{1}=7.1, \lambda_{1}=9$ and $\rho=0.05 \rightarrow 70$ beds
- Clinical department 2: $\mu_{2}=6.6, \lambda_{2}=3$ and $\rho=0.05 \rightarrow 25$ beds
- Clustered: $\frac{\mu_{1} \lambda_{1}+\mu_{2} \lambda_{2}}{\lambda_{1}+\lambda_{2}}=6.975, \lambda_{1}+\lambda_{2}=12$ and $\rho=0.05 \rightarrow 89$ beds

PROBLEMSTATEMENT

- Which clinical departments should be clustered?
- How to assign the clusters to the available wards?
\rightarrow 2-phase problem

CONSTRAINTS

- Assign each clinical department to exactly one cluster.
- Not all clinical department pairs can be clustered due to medical reasons.
- At most one cluster can be assigned to each ward.
- The number of beds on the assigned wards must be sufficient to guarantee the prespecified blocking probability.

OBJECTIVE FUNCTION

- Minimize number of clinical departments assigned to one cluster
- Minimize distance between wards assigned to a cluster
- Maximize the preferences of a clinical department for certain wards

SOLUTION MEIHODS

- Exact solution method \rightarrow ILP
- Problem 1: linearize number of beds needed for a cluster
- Problem 2: quadratic term in objective function
- Approximation solution method \rightarrow ILP with approximation number of beds
- Hybrid heuristic \rightarrow Combine local search with ILP

SOLUTION METHODS

APPROXIMATION SOLUTION METHOD

UNIVERSITY OF TWENTE.

SOLUTION METHODS

APPROXIMATION SOLUTION METHOD

HYBRID HEURISTIC

- Based on column generation
- As columns we consider formed clusters
\rightarrow Building blocks of solutions of the 'first phase'
- ILP selects a good combination of clusters and assigns them to wards
\rightarrow Solve 'second phase'
- Use local search to select subset of generated clusters

HYBRIDHEURISTIC

1. Generate the set (a subset) of possible clusters
2. Solve ILP with an initial subset of these clusters
3. Solve ILP with a new subset of clusters that includes the clusters selected in the optimal solution of the previous iteration
4. Repeat step 3 until no improvement is made in N iterations

HYBRID HEURISTIC

- In the first iteration, a feasible solution is not guaranteed. Thus, the step is repeated until a feasible solution is found.
- In the next iterations, a feasible solution is guaranteed because the solution of the previous iteration is included.
- The obtained objective function values form a non-decreasing sequence, thus, this hybrid heuristic converges to a local optimum.

COMPUTATIONRESULTS

- Exact solution method \rightarrow unpredictable and long solution time
- Approximation solution method \rightarrow problems with overestimation number of beds needed
- Hybrid heuristic \rightarrow good solutions to original problem in short time

COMPUTATIONRESULTS

- 16 clinical dep. 11
- 13 wards
- 378 beds

$\mathbf{1 0}$		
	32	32
$\mathbf{9}$		32
$\mathbf{8}$		
$\mathbf{7}$	32	32
$\mathbf{6}$	32	32
$\mathbf{5}$	32	30
$\mathbf{4}$	8	24

COMPUTATIONRESULTS

FURTHERRESEARCH

- μ and λ are quite uncertain and may change over the years
- Develop robust solution methods to deal with these changes

UNIVERSITY OF TWENTE.

THAN YOUFOR YOUR ATIENION

J.L.HURINK@UTWENIENL

